a2 United States Patent

US010175350B1

ao) Patent No.: US 10,175,350 B1

Tsokos et al. 45) Date of Patent: Jan. 8, 2019
(54) SYSTEMS AND METHODS FOR DETECTING 7,320,271 B2* 1/2008 Hintz ......cccccco... GO1S 7/2923
BURIED OBJECTS 342/22
8,194,250 B2* 6/2012 Morgan ................. GO1S 13/89
(71) Applicants: University of South Florida, Tampa, . ) 342/191
FL (US); University of the Sciences in 2003/0076254 Al*  4/2003 Witten ....ccooovees GOI;Z %g
Philadelphia, Philadelphia, PA (US) 2004/0168358 Al 9/2004 Stump
2005/0156776 Al*  7/2005 Waite .......ccccceeeurnnne GO1V 3/12
(72) Inventors: Chris P. Tsokos, Tampa, FL. (US); ate 342/22
Abolfazl Saghafi, Philadelphia, PA (Continued)
(US); Sajad Jazayeri, Tampa, FL (US);
Sanaz Esmacili, Tampa, FL (US) FOREIGN PATENT DOCUMENTS
(73) Assignees: University of South Florida, Tampa, KR 101364759 Bl 22014
FL (US); University of the Sciences in
Philadelphia, Philadelphia, PA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this ) ) ) )
patent is extended or adjusted under 35 S. Shihab, Waleed Al-Nuaimy, Yi Huang, Asger Eriksen, Neural
U.S.C. 154(b) by 0 days. network target identifier based on statistical features of GPR signals,
Proc. SPIE 4758, Ninth International Conference on Ground Pen-
(21) Appl. No.: 16/021,928 etrating Radar, (Apr. 12, 2002); 135-138.
. (Continued)
(22) Filed: Jun. 28, 2018
(51) IGn0t'II€l3'/12 (2006.01) Primary Examiner — Peter M Bythrow
GOIS 13/42 (2006.01) gﬁl})) Attorney, Agent, or Firm — Thomas | Horstemeyer,
GOIS 13/88 (2006.01)
(52) US. CL
CPC .......... GOIS 13/885 (2013.01); GOLS 13/426 (57) ABSTRACT
(2013.01); GO1V 3/12 (2013.01)
(58) Field of Classification Search In one embodiment, a method for detecting buried objects
CPC ... GO1S 13/88; GO1S 13/885; GO1S 13/887; includes receiving ground penetrating radar (GPR) signals
GO1S 13/888; GO1V 3/12 captured at discrete locations along a surface of a medium in
USPC e 342/22 which an object may be buried, computing parameters based
o . ] y puting p
See application file for complete search history. on the received GPR signals that are indicative of the
. proximity of a buried object, plotting the computed param-
(56) References Cited eters as a function of location, determining an apex of a

U.S. PATENT DOCUMENTS

6,335,624 B1*

7,173,560 B2* 2/2007 Li

1/2002 Berthier

GO1V 3/12
324/326
F41H 11/12
324/326

hyperbola that results from the plotting of the computed
parameters, and designating a location at which the apex
occurs as an estimated location of the buried object.

15 Claims, 11 Drawing Sheets

12

~

20 (%50 ] ¥
14
Q O s 16 *

/8



US 10,175,350 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0055584 Al* 3/2006 Waite ......ccoeeennnne GO1S 13/86
342/22

2010/0315280 Al* 12/2010 Bakhtar ... GO1S 13/02
342/22

2013/0082860 Al* 4/2013 Paglieroni ............... GO1S 13/90
342/22

2013/0082870 Al* 4/2013 Chambers ............... GO1S 13/90
342/25 A

2014/0079248 Al* 3/2014 Short ............ G10L 21/0272
381/119

2014/0104094 Al* 4/2014 Feigin ....ccevevrnnne. B41J3/36
342/22

2015/0268218 Al* 9/2015 Troxler .............. GO1S 13/0209
342/21

2016/0097879 Al* 4/2016 Stolarczyk ........... HO04W 4/046
342/22

2016/0260222 Al*
2018/0052229 Al*

9/2016 Paglieroni GO6T 7/11
2/2018 Ranney ............... GO01S 7/025

OTHER PUBLICATIONS

Xiaoyin Xu, Eric L. Miller, Statistical method to localize buried
landmines from GPR array measurement, Proc. SPIE 4394, Detec-
tion and Remediation Technologies for Mines and Minelike Targets
VI, (Oct. 18, 2001), 742-753.

Abolfazl Saghafi, et al., Real-time object detection using Power
Spectral Density of Ground Penetrating Radar Data, Preprint sub-
mitted to Construction and Building Materials, (Feb. 26, 2018), 1-7.
Richard Zuech, et al., Intrusion detection and Big Heterogeneous
Data: a Survey, Journal of Big Data, (2015) 2:3, 1-41.

X. Zeng, G. A. McMechan, GPR characterization of buried tanks
and pipes, Geophysics 62 (3) (1997) 797-806.

E. Pettinelli, A. Di Matteo, E Maffei, L. Crocco, F. Soldovieri, I. D.
Redman, A. P. Annan, GPR response from buried pipes: Measure-
ment on field site and tomographic reconstructions, IEEE Transac-
tions on Geoscience and Remote Sensing 47 (8) (2009) 2639-2645.
J. F. Sham, W. W. Lai, Development of a new algorithm for accurate
estimation of GPR’s wave propagation velocity by common-offset
survey method, NDT & E International 83 (2016) 104-113.

S. Jazayeri, A. Klotzsche, S. Kruse, Improving estimates of buried
pipe diameter and infilling material from GPR profiles with full
waveform inversion using PEST, Geophysics, revised, pending
acceptance. Geophysics, 83(4) (2018), H27:H-41.

W. Al-Nuaimy, Y. Huang, M. Nakhkash, M. Fang, V. Nguyen, A.
Eriksen, Automatic detection of buried utilities and solid objects
with GPR using neural networks and pattern recognition, Journal of
applied Geophysics 43 (2) (2000) 157-165.

S. Birkenfeld, Automatic detection of reflexion hyperbolas in GPR
data with neural networks, in: World Automation Congress (WAC),
2010, IEEE, 2010, pp. 1-6.

C. Maas, J. Schmalzl, Using pattern recognition to automatically
localize reflection hyperbolas in data from ground penetrating radar,
Computers & geosciences 58 (2013), 116-125.

E. Pasolli, F. Melgani, M. Donelli, R. Attoui, M. De Vos, Automatic
detection and classification of buried objects in GPR images using
genetic algorithms and support vector machines, in: Geoscience and
Remote Sensing Symposium, 2008. IGARSS 2008. IEEE Interna-
tional, vol. 2, IEEE, 2008, pp. II-525: 1I-528

Q. Lu, J. Pu, Z. Liu, Feature extraction and automatic material
classification of underground objects from ground penetrating radar
data, Journal of Electrical and Computer Engineering, 2014 (2014)
28, 11 pages.

L. Qiao, Y. Qin, X. Ren, Q. Wang, Identification of buried objects
in GPR using amplitude modulated signals extracted from multiresolu-
tion monogenic signal analysis, Sensors 15 (12) (2015), 30340-
30350.

W. Li, X. Cui, L Guo, J. Chen, X. Chen, X. Cao, Tree root automatic
recognition in ground penetrating radar profiles based on random-
ized hough transform, Remote Sensing 8 (5) (2016) 430, 1-16.

Q. Dou, L. Wei, D. R. Magee, A. G. Cohn, Real-time hyperbola
recognition and fitting in gpr data, IEEE Transactions on Geosci-
ence and Remote Sensing 55 (1) (2017), 51-82.

S. Jazayeri, A. Ebrahimi, S. Kruse, Sparse blind deconvolution of
common-offset GPR data, in: SEG Technical Program Expanded
Abstracts 2017, Society of Exploration Geophysicists, 2017, 5140-
5145.

C. Warren, A. Giannopoulos, I. Giannakis, gprMax open source
software to simulate electromagnetic wave propagation for ground
penetrating radar, Computer Physics Communications 209 (2016),
163-170.

C. A. Ratanamahatana, E. Keogh, Everything you know about
dynamic time warping is wrong, in: Third Workshop on Mining
Temporal and Sequential Data, Citeseer, 2004, 1-11.

D. J. Berndt, J. Clifford, Using dynamic time warping to find
patterns in time series., in: KDD workshop, vol. 10, Seattle, WA,
1994, pp. 359-370.

Y. Cao, N. Rakhilin, P. H. Gordon, X. Shen, E. C. Kan, A real-time
spike classification method based on dynamic time warping for
extracellular enteric neural recording with large waveform variabil-
ity, Journal of neuroscience methods 261 (2016) 97-109.

A. Kaczmarek, M. Staworko, Application of dynamic time warping
and cepstrograms to text-dependent speaker verification, in: Signal
Processing Algorithms, Architectures, Arrangements, and Applica-
tions Conference Proceedings (SPA), 2009, IEEE, 2009, pp. 169-
174.

Z. Hui-lin, T. T Mao, C. Xiao-li, Feature extraction and classifica-
tion of echo signal of ground penetrating radar, Wuhan University
Journal of Natural Sciences 10 (6) (2005) 1009-1012.

C. G. Windsor, L. Capineri, P. Falorni, The estimation of buried pipe
diameters by generalized hough transform of radar data, PIERS
Online 1 (3)(2005) 345-349.

A. Dell’Acqua, A. Sarti, S. Tubaro, L. Zanzi, Detection of linear
objects in gpr data, Signal Processing 84 (4) (2004) 785-799.

S. Jazayeri, A. Saghafi, S. Esmaeili, C. P. Tsokos, Online object
detection using Dynamic Time Warping on common-Offset GPR,
Under Review. Physics and Statistics. 1-6.

A. Gholami, M. D. Sacchi, A fast and automatic sparse deconvolu-
tion in the presence of outliers, IEEE Transactions on Geoscience
and Remote Sensing 50 (10) (2012) 4105-4116.

H. Ahmadi, Z. Khaksar, Using power spectral density for fault
diagnosis of belt conveyor electromotor, Innovative Computing
Technology (2011) 15-20.

K. Mollazade, H. Ahmadi, M. Omid, R. Alimardani, An intelligent
combined method based on power spectral density, decision trees
and fuzzy logic for hydraulic pumps fault diagnosis, International
Journal of Intelligent Systems and Technologies 3 (4) (2008)
251-263.

M. Rucka, K. Wilde, Ultrasound monitoring for evaluation of
damage in reinforced concrete, Bulletin of the Polish Academy of
Sciences Technical Sciences 63 (1) (2015) 65-75.

A. Moosavian, H. Ahmadi, A. Tabatabaeefar, Condition monitoring
of engine journal bearing using Power Spectral Density and support
vector machine, Elixir International Journal 43 (2012) 6631-6635.
O. Solomon Jr, PSD computations using Welch’s method, NASA
STI/Recon Technical Report N 92. (1991) 1-54.

K. K. Parhi, M. Ayinala, Low-complexity welch power spectral
density computation, IEEE Transactions on Circuits and Systems I:
Regular Papers 61 (1) (2014) 172-182.

* cited by examiner



U.S. Patent Jan. 8, 2019 Sheet 1 of 11 US 10,175,350 B1

26
)o
22
12
Z
20 20 y
o) (O
16 X
~
18 //./
GPR DEVICE 12
CENTRAL GRP SIGNAL
CONTROLLER |3  GENERATOR
30 32
GPR
GPR Rg‘gE'VER TRANSMITTER
= 34

FIG. 2



U.S. Patent Jan. 8, 2019 Sheet 2 of 11 US 10,175,350 B1

%
E

(B

;
i

fraguenty

Logy Povesy

Refarence Signad

e s
L UE R

G SO0 1006 4800 Z000 ZBGD S0N0 3800 40
Abaver Buried Dbedt

FIG. 3A

s Hitaranng Slanal
e St ahsve Buarhed aldect

3
. poe
T i

e, ;
P
g ey
124 i
«135
Eit

oo
3
o8
ks



U.S. Patent Jan. 8, 2019 Sheet 3 of 11 US 10,175,350 B1

Brenatio 1

Y S 3 ] 7y 87 :
{} 0.5 % 15

RS

s
oy

el
(5

. oy
3 & il

{oy

FIG. 4B

&




U.S. Patent

ax PEvalyer

Mo PR values

Jan. 8, 2019

Sheet 4 of 11

US 10,175,350 B1

b

ok

s

=

Sowed Average of Four

Ruapeantint Gorfidence Limi

e
e
e

N

ny
i

s Windeernd Arerages of Four

Saquantial Confidance Liy

3
§
§
f

o

L5




U.S. Patent Jan. 8, 2019 Sheet 5 of 11 US 10,175,350 B1

v
WA
4
e iindoweed Averaoe of Fag
ok -Sempental Donfidence L
A5
%z 2 ﬁ .
v
o5
& 4
T
;,é‘
Boaw
% 15
4.8
4 .
] G5 1 1.8 # 28 %

® (i}

FIG. 5C

FIG. 6A



US 10,175,350 B1

Sheet 6 of 11

Jan. 8, 2019

U.S. Patent

g‘ﬁt

£

£i¢]

b

i.

st
£H

v

3

Warg

3

PHEA (1ol XU DAoL

18

&

. 6B

FIG

e

Yoo

it

#

FIG. 7A



U.S. Patent Jan. 8, 2019 Sheet 7 of 11 US 10,175,350 B1

sy

Estimated Location « Estimated Location

(1‘-

=

£

3

£

=R

S

= Lo g

e |
SBdar

k> Warning ﬁ

= i

& i

&

£ :

&

i

v

D e
P
B S i

A

by

i waming | Zj
i

4 8
% i

FIG. 7B



U.S. Patent

Jan. 8, 2019 Sheet 8 of 11

{ START )

40
Y [
CAPTURE A NUMBER OF REFERENCE GPR
SIGNALS FROM OBJECT-FREE LOCATIONS
42
v ;
COMPUTE MAXIMUM PSD FOR EACH
REFERENCE GPR SIGNAL
44
¥ 4
CAPTURE NEW GPR SIGNAL
AT A NEW LOCATION
46
Y a

COMPUTE THE MAXIMUM PSD FOR THE NEW
GPR SIGNAL AND ADD THE MAXIMUM PSD
VALUE TO A GRAPH THAT PLOTS MAXIMUM PSD
AS A FUNCTION OF LOCATION

48
Y 4

COMPUTE A FIRST WINDOW AVERAGE
OF A FIRST PREDETERMINED NUMBER
OF THE LAST MAXIMUM PSDs

50
Y /

COMPUTE A SECOND WINDOW AVERAGE
OF A SECOND PREDETERMINED NUMBER
OF THE LAST MAXIMUM PSDs

i /52

COMPUTE A ONE-SIDED T-DISTRIBUTION
CONFIDENCE INTERVAL

FIG. 8A

US 10,175,350 B1



U.S. Patent Jan. 8, 2019 Sheet 9 of 11

18T WINDOW AVG.
> SUM OF 2ND WINDOW AVG.
AND CONF. INT.?

US 10,175,350 B1

54

ISSUE A WARNING THAT A
BURIED OBJECT 1S NEAR

"~ APEX OF
HYPERBOLA
REACHED?

fso

IDENTIFY ESTIMATE OF OBJECT LOCATION

Y

/62

ESTIMATE VELOCITY OF THE GPR SIGNAL
AT THE IDENTIFIED LOCATION

Y

/64

ESTIMATE DEPTH OF THE OBJECT
BASED UPON ESTIMATED VELOCITY

END

FIG. 8B



U.S. Patent Jan. 8, 2019 Sheet 10 of 11 US 10,175,350 B1

-

AR

R
R




US 10,175,350 B1

Sheet 11 of 11

Jan. 8, 2019

wuafhe SouBIREM LI ARERUSSD M

U.S. Patent

s

¥

g
£

*ém

FIG. 9B



US 10,175,350 B1

1
SYSTEMS AND METHODS FOR DETECTING
BURIED OBJECTS

BACKGROUND

Ground penetrating radar (GPR) is a popular modality for
use in locating buried objects because of its non-destructive
utilization and fast data collection. Unfortunately, manual
processing of the accumulated data is typically required to
locate an object, which can be time-consuming and requires
skill. In applications in which there is an abundance of
possible objects, such as detecting rebar reinforcement in
foundation construction and locating utilities, it can be
especially challenging to locate the objects using GPR.

Various approaches have been developed with the goal of
automating object location using GPR. For example, neural
networks and image processing-based pattern recognition
methods have been reported as being useful for this purpose,
but they are sensitive to noise and fail to perform adequately
in the presence of incomplete or highly disturbed hyperbolic
patterns. Needed are systems and methods that automate the
processing of GPR data and provide accurate and reliable
estimates as to the location and depth of buried objects.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood with
reference to the following figures. Matching reference
numerals designate corresponding parts throughout the fig-
ures, which are not necessarily drawn to scale.

FIG. 1 is a schematic diagram illustrating the capture of
ground penetrating radar (GPR) signals using a GPR device.

FIG. 2 is a schematic diagram of an embodiment of a
configuration for the GPR device shown in FIG. 1.

FIG. 3A includes graphs of an example reference GPR
signal (top) and an example GPR signal captured above a
buried object (bottom).

FIG. 3B is a graph that plots Welch power spread density
(PSD) estimates for the GPR signals of FIG. 3A.

FIG. 4A includes graphs of example GPR profiles for each
of three different scenarios: Scenario 1, Scenario 2, and
Scenario 3.

FIG. 4B is a graph that plots maximum PSD values for a
Case #6 for each of the GPR profiles of FIG. 4A.

FIGS. 5A-5C are graphs that plot maximum PSD values
for Case #6 for Scenarios 1, 2, and 3, respectively.

FIG. 6A is a GPR profile captured over a pipe site.

FIG. 6B is a graph that plots smoothed maximum PSD
values for the GPR profile of FIG. 6A.

FIG. 7A is a GPR profile captured on asphalt.

FIG. 7B is a graph that plots smoothed maximum PSD
values for the GPR profile of FIG. 7A.

FIGS. 8A and 8B together comprise a flow diagram of an
embodiment of a method for detecting buried objects.

FIG. 9A includes graphs of example GPR profiles for each
of the three different scenarios.

FIG. 9B is a graph that plots dynamic time warping values
for a Case #7 for each of the GPR profiles of FIG. 9A.

DETAILED DESCRIPTION

As described above, there is a need for systems and
methods that automate the processing of ground penetrating
radar (GPR) data and provide accurate and reliable estimates
as to the location and depth of buried objects. Disclosed
herein are examples of such systems and methods. In one
embodiment, a system comprises a GPR device that captures
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GPR signals at various locations along the surface of a
medium (e.g., ground) and automatically estimates the loca-
tion of objects buried in the medium based upon the captured
signals. In some embodiments, a maximum energy value,
such as the power spectral density (PSD), is determined in
real time for each location at which a GPR signal is captured.
This maximum energy value is monitored as the GPR data
is collected and significant increases in the value indicate the
likely presence of a buried object. In some embodiments, the
location of the object is estimated to be the location at which
an apex occurs for a hyperbola that results from plotting the
maximum energy values as a function of location. Once the
location of the object has been determined, the depth of the
object can be estimated by first estimating a velocity of the
GPR signals at the determined location.

In the following disclosure, various specific embodiments
are described. It is to be understood that those embodiments
are example implementations of the disclosed inventions
and that alternative embodiments are possible. All such
embodiments are intended to fall within the scope of this
disclosure.

A statistical approach is described in this disclosure that
is based on the fundamental idea of monitoring a signal’s
energy. The disclosed method runs automatically and warns
the user of potential burial sites by monitoring changes in the
energy of the GPR signals. The method further performs
automatic hyperbola mapping as well as, location, velocity,
and depth estimation with high accuracy. The analytics run
quickly and are robust to low levels of noise, which make
them suitable for on-site utilization. As described below, the
viability of the method has been confirmed through the use
of both synthetic models and real-world test cases.

The PSD of a signal, such as a GPR signal, refers to its
spectral energy distribution as a function of frequency.
When searching for buried (e.g., underground) objects using
GPR, the captured signal is expected to have greater energy
as the buried object is approached. This is because a greater
number of signal waves are reflected back to the GPR device
receiver when the waves impact a buried object. Thus, it is
logical that the energy of GPR signals change depending on
the distance from buried objects. This concept is the basis for
at least some of the disclosed systems and methods.

FIG. 1 illustrates an example system 10 for detecting
buried objects. As shown in this figure, the system 10
generally comprises a GPR device 12. In the example of
FIG. 1, the GPR device 12 comprises a housing 14 that is
supported above a surface 16 of a medium 18, such as the
ground, by one or more wheels 20. The GPR device 12
further comprises a handle 22 that can be used to move the
device along the surface 16 for the purpose of capturing
GPR signals at various locations along the surface. As used
herein, the term “location” refers to the position of an object,
such as the pipe 24 shown in FIG. 1, along the surface 16 of
the medium 18, as opposed to the depth of the object within
the medium. With reference to the coordinate system shown
in FIG. 1, the location is a position along the x axis while the
depth is a position along the z axis (a negative value). With
further reference to FIG. 1, the GPR device 12 also com-
prises a user interface 26 mounted to the handle 22 that can
be used to convey optical and/or auditory information to the
user of the device, such as an alert that the device is nearing
a buried object, an indication of the location of the object,
and an indication of the depth of the object. In some
embodiments, the user interface 26 includes a display and at
least one speaker.

FIG. 2 illustrates an example configuration for the GPR
device 12. As shown in this figure, the GPR device 12



US 10,175,350 B1

3

comprises a central controller 30 that controls various com-
ponents of the device, a GPR signal generator 32 that
generates GPR signals that are to be transmitted into the
medium, a GPR transmitter 34 that transmits the generated
GPR signals into the medium, and a GPR receiver 36 that
receives reflected GPR signals from the medium. As iden-
tified above, the received GPR signals are automatically
processed to estimate the location and depth of objects
within the medium. In some embodiments, this processing
can be performed onboard the GRP device 12 by a comput-
ing component of the device, such as the central controller
30. In such a case, the component can comprise a non-
transitory computer-readable medium that stores an estima-
tion program comprising computer-executable instructions,
for example comprised by one or more algorithms, which
can be executed by a processor of the component to auto-
matically estimate in real time the object’s location and
depth from the received GPR signals. Examples of such
estimation are described in the discussion that follows.
While such estimation has been identified as being per-
formed by and on the GPR device 12, it is noted that the
received GPR signals can be provided to a separate com-
puting component, such as an independent computing
device, that can perform such estimation.

FIG. 3A shows examples of GPR signals of the type that
can be captured using a GPR device, such as the GPR device
12. More particularly, FIG. 3A shows a reference signal
(top) generated from an object-free location and a test signal
(bottom) from a location directly above a buried object. FIG.
3B shows PSD estimates for each of the GPR signals of FIG.
3A and reveals how different their PSD estimates are.

The PSD estimates shown in FIG. 3B, as well as other
PSD estimates described herein, were determined using the
Welch method. The general procedure behind Welch’s
method is to first segment a signal x=(x, . . . X;) of length
T into K overlapped segments of size M. Then, for each
segment, a windowed discrete Fourier transform (DFT) is
computed at some frequency

v=j/M with- (M/2-1)=<j<M/2 (69)

X = ) xmwimexp(- j2mvm)

m

where S is the number of points to shift between segments,
w(m) is the Hamming window function, and m=
k=-1)S, ..., M+(k-1)S-1. Next, the modified periodogram
value is computed from the discrete Fourier transform for
each segment:

Pk(v):%|xk(v)|2,k=1,...<1<, @

where

M
W= Z WA(m).
m=1

Welch’s estimate of the PSD is then obtained by averaging
the periodogram values:
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FIG. 4A shows GPR profiles for three different scenarios
that were used to statistically evaluate the performance of
the disclosed systems and methods. In this evaluation, 20
cases of two-dimensional synthetic models were generated
for three different scenarios. In Scenario 1, there was no
buried object but the GPR signals included noise and
random outliers. In Scenario 2, a water-filled PVC pipe with
wall thickness of 3 mm and inner diameter of 10 cm was
buried in sand at a random location and depth. The GPR
signals were free from noise and outliers in this scenario. In
Scenario 3, noise was added to the cases in Scenario 2 to
imitate a more realistic setting. The additive noise was
considered to be a combination of white noise with Gaussian
distribution, a signal-to-noise ratio of 25 dB, and random
outliers. These two-dimensional synthetic models were cre-
ated using the FDTD gprMax code. All materials are con-
sidered to be homogeneous (see Table 1). The transmitted
pulse was an 800 MHz Ricker wavelet with an antenna offset
of 14 cm and a trace interval of 2.5 cm.

TABLE 1

Material properties

Relative Electrical
Media permittivity conductivity (mS/m)
Soil 5 1
PVC pipe 3 1
water 80 1

The GPR profiles in FIG. 4A were taken from a Case #6
for each of the three experimental scenarios. The maximum
PSD is plotted for each of the three GRP profiles in FIG. 4B.
As can be appreciated from FIG. 4B, the presence of a
buried object (Scenarios 2 and 3) is detectable using the
maximum PSD because there is an increasing pattern to the
maximum PSD values as one approaches the object. The
maximum energy of GPR signals from the object-free loca-
tions (Scenario 1), however, have constant maximum PSD
values with only minor deviations due to noise.

To detect a buried object and estimate its location and
depth, GPR signals are captured at various locations along
the surface of the medium under evaluation. During this
process, object-free locations are first scanned for reference.
For example, three object-free locations can be scanned and
their GPR signals are recorded. Once these signals have
been recorded, scanning can proceed by scanning target
areas and computing the maximum energy of the new
locations using Equation (3). The more similar the signals
are to the reference signal, the closer their energy is. This
also means that the medium is object-free at least to some
fair distance away from the current location. As scanning
continues and the GPR device gets closer to a location of a
buried object, however, the maximum PSD values gradually
increase. The potential burial location is the near the location
at which a peak of the maximum PSD occurs. Investigation
of neighboring locations reveals a hyperbolic signature (see
FIG. 4B), which is useful to estimation of the location and
depth of the buried object.

The general procedure for detecting a buried object hav-
ing been described above, an explicit statistical approach to
detecting a buried object will now be discussed. The pro-



US 10,175,350 B1

5

cedure is a real-time sequential control process that monitors
GPR signals as they are recorded.

Suppose x,~(x,,', x,2, . . ., x,,7) is the n” captured GPR
signal where X, X,, and x; are recorded from object-free
(reference) locations. Assume p,, is the maximum PSD of the
n” recorded signal computed using Equation (3). Let p,*
represent the window average of the last 4 maximum PSD

values given by

)

RN

and let p,*° represent the window average of the last 25

maximum PSD values given by

®

725

P ZSZp‘

i=n-24

where the average of 25 is computed for the available values
in the beginning of the process and is shown by p,”.
Theorem: As soon as the n™ signal is recorded, the following
decision boundary detects underground objects with prob-
ability 0.999 for n=25:
n25

D.>p (6)

where

o

21 21
25 25
u3 = 1(24, 0.999)S2 (ﬁ]@ + 4—2]

For 4=n=<24, the following boundary detects underground
objects with the same probability:

PP (®)
where

)

n—-4 n—-4
up =tn—1, 0.999)53(—2)(1 + —)
"

n2

The proot of the above theorem is as follows. Under the
hypothesis that there is nothing buried nearby, the window
average of 25 and 4 have the same expected value, that is

E(_ 4) 257E(_ 25)
However, by approaching object locations, the window
average of 4 increases promptly while the window average
of'25 increases gradually. To detect this change as quickly as
possible, one is testing the following statistical hypothesis at
each step of the process:

10)

Ho:p4:p25 Vs Hy :p4>p25 (11

where p* is the true mean of the window average of 4
maximum PSD values and p*° is the mean of the window
average of 25 maximum PSD. The test statistic is (P,*-P, )
which is unbiased under the null-hypothesis:

LB, -P,*)=0 12
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and has the following variance

i)

where Var(P,”")=o/n. Thus, using the central limit theorem,
one has

( st) (13)

14

1s)

where

(16)

25 _
S —\/24 224(p1

Thus, using a t-distribution confidence interval, when an
object is buried underground one has (p,*-p,*)>u, >,
where

21

25 E) amn
25 = 124, 0.999)S2 (252](1+ T

As long as (p,*-p,*>)=u,,>>, the process is under control and
the probability of not detecting a change equals 0.001, which
is related to the selected t-distribution critical value.

The computational steps involved in the above-described

theorem are as follows:

(1) As soon as x,(n=4) is recorded, its maximum PSD is
computed along with the window average of four (p,*)
and the window average of 25 (p,*> or p,” when
applicable).

2) A one- sided t-distribution confidence interval (O,

2%+u,,%%) is generated using Equation (7). When there
are less than 25 observations, this interval is computed
as (0, pn +u,”) using Equatlon (9)

3) Ifp, <pn25+u 2> (or p,*<p,”+u,” when applicable),

the process is under control and the chance of failure in

detection is 0.001. Otherwise, a warning is issued and

a buried object is detected ahead. In this case, the

average p,* keeps increasing by approaching the buried

object.

(4) Scanning and monitoring target areas continues after
a local peak of p,* is achieved. This peak happens
around a highly probable burial site, x,(a<n=<b).

(5) A hyperbola is mapped and tracked for signals of the
probable burial site through analytic searching. The
location of the buried object is estimated to be the
location of the apex of the hyperbola.

(6) A least-square approach is then used to approximate
the velocity of the GPR signal using the marked nodes
on the diffracted hyperbola in step 5. Then, the one-way
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travel time of the wave at the estimated location of the
object is multiplied by the velocity to estimate the
depth. A zero-time correction is applied beforehand
where the zero-time is estimated using the potential
burial site signals.

(7) The above process is repeated for all the local peaks

of p,* for detecting multiple objects.

FIGS. 5A-C show the decision process using the above-
described approach for Case #6 in the three experimental
scenarios. In Scenario 1, where there was nothing buried, the
confidence limit had some fluctuations. There are a few
observations outside the confidence limit due to noise,
which triggers a warning but overall the change in maximum
PSD is insignificant and does not create a significant peak of
maximum PSD values. In Scenario 2 however, the confi-
dence limit increases due to a significant increase of signal’s
energy. In this case, a warning alarm was generated at
x=0.820 m, and the location and depth of the buried object
were estimated to be 1.62 m and 0.224 m, respectively. The
true location of the object was 1.62 m and the depth was 0.23
m. Scenario 3 generated roughly the same curve as Scenario
2 because the PSD approach handles the additive noise quite
well. An alarm was generated at x=0.395 m and the location
and depth of the object were estimated to be 1.62 m and
0.223 m, respectively.

Table 2 represents the overall performance of the 20
experimental cases in Scenarios 2 and 3. All 20 cases of
Scenario 1 successfully generated a “nothing detected”
notification, while all cases in Scenarios 2 and 3 detected a
buried object. For cases in Scenario 2, a detection alarm was
generated on average at least 90 cm prior to reaching the
object. The mean absolute error (MAE) and root mean
square error (RMSE) for were 0.47 cm and 0.73 cm,
respectively, meaning that, on average, the error in estimat-
ing lateral location was 0.47 cm. The RMSE is a wellness of
fit measure that includes both the estimation bias and
variance. The depth in this scenario was estimated with an
MAE of 1.80 cm and an RMSE of 2.30 cm. For cases in
Scenario 3, a detection alarm was issued at least 94 ¢cm ahead
of'the location at which the object was buried. The MAE and
RMSE for location estimation were 0.375 cm and 0.602 cm,
respectively. The depth estimation had an MAE 0f2.027 cm
and an RMSE of 2.837 cm.

TABLE 2

Mean Absolute Error (cm) and
Root Mean Square Error (cm) of the max
PSD analytics in 20 simulated cases for two scenarios

Location Depth
Scenario Detection MAE RMSE MAE RMSE
Scenario 2 89.975 0.474 0.725 1.797 2.299
Scenario 3 93.975 0.375 0.602 2.027 2.837

In addition to the synthetic modeling, real-world testing
was performed to assess the performance of the proposed
analytics in real life. First, a dataset was collected over a
sand test site in which multiple buried pipes and tree roots
existed. A MALA ProEx GPR device with 800 MHz
shielded antenna was used to probe the ground where two
PVC pipes with a wall thickness of 3 mm and a radius of 4.1
cm were buried 35 cm below the surface at 1.2 mand 5.2 m.
Beside the pipes were two tree roots at 7.8 m and 9.1 m.
Hyperbolic responses were observed for each of these buried
objects. Second, a portion of a long GPR profile collected
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along on a road using the same equipment was utilized to
illustrate a complex environment. The study area was part of
a main road covered with asphalt and encompassing differ-
ent utilities and drainage channels.

As expected, the proposed analytics performed well on
real-life data with multiple buried objects. FIG. 6A shows
the GPR profiles and FIG. 6B shows the associated maxi-
mum PSD values. The PSD values were smoothed using a
moving average of 21 that was selected by experimenting on
the synthetic data. The location of the objects were estimated
to be x=1.216 m, 5.201 m, 7.761 m, and 9.065 m with
corresponding depths of 0.353 m, 0.282 m, 0.387 m, and
0.430 m.

FIG. 7A shows the GPR profile and FIG. 7B shows the
smoothed maximum PSD values along with the generated
warning and estimated locations for the second real dataset.
The location and depth of the first object was estimated to be
at 2.007 m and 0.541 m, respectively. The second object was
estimated to be at 5.465 m at a depth of 0.779 m. Perfor-
mance of the analytics in this multiple-object case is remark-
able considering the level of distortion and noise in the data.
Normally, alternate detection methods fail to detect objects
in such real-world cases due to severe distortions in the GPR
signal. However, the disclosed method successfully detected
the objects and performed valid depth estimation using
imperfect hyperbolic signatures. The exact locations and
depths in this real experiment are unknown but the results
match expert expectations. There is a high sharp peak at 4.90
m in the smoothed maximum PSD graph that could be a
result of mixed energies of two densely spaced anomalies. In
this case, the analytics estimated the local maximum of the
smoothed PSD values occurring around 4.90 m and tracked
the trace of the hyperbola using a custom window search to
reach its peak at 5.41 m.

To compare the results of the proposed analytics with
other methods, it is noteworthy to mention that no other
study has reported statistical measures of performance such
as MAE and RMSE, as presented here. The main perfor-
mance measure reported by other studies is the detection
accuracy, which is calculated as the percentage of correct
object detections. To that extent, the disclosed method had
100% success in detecting the subsurface anomalies in all
cases of synthetic and real data used in this research.

In summary, a statistical analytical monitoring scheme is
disclosed that utilizes maximum energy of GPR signals to
detect hidden buried objects and estimate their locations as
well as their depths. The computations are performed
instantly and, therefore, can be performed in real time. An
alert is set to warn the user when a potential burial site is
detected ahead by setting a threshold on the maximum PSD
values. The site could be detected at least 44 cm ahead on
average and the threshold was set using a t-distribution.
Sensitivity of the alert process can be changed by changing
the threshold. A window average of four maximum PSDs for
checking in/out of control states was utilized since four
samples cut the length of the interval in half. The next
window size that has significant effect on the length is nine.
A window average of 25 maximum PSDs has been used to
create confidence limits by considering the central limit
theorem and approximate t-distribution for the average.

FIGS. 8A and 8B present a flow diagram of an embodi-
ment of a method for detecting a buried object that is
consistent with the above disclosure. Beginning with block
40 of FIG. 8A, a number of reference GPR signals are
captured from object-free locations. As described above, the
number of reference GPR signals captured, and therefore the
number of reference locations sampled, can a small number.
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As an example, 1 to 5 reference GPR signals (e.g., 3 signals)
can be captured. Irrespective of the number of reference
GPR signals that are captured, each signal can, for example,
be obtained from a location positioned along a line traversed
by the GPR device. Referring to block 42, the maximum
PSD is computed for each captured reference GPR signal.
As described above, the PSD can be computed using Equa-
tion (3).

Once the reference signals have been captured, test sig-
nals can then be captured. Accordingly, as indicated in block
44, a new GPR signal is captured at a new location. This
location can, for example, be a position farther along the
same line from which the reference GPR signals were
captured. With reference to block 46, the maximum PSD for
the new GPR signal is computed and that maximum PSD
value is added to a graph that plots maximum PSDs as a
function of location. While a graph can literally be plotted,
it is noted that no graph need actually be generated in a
format that the user can review. Accordingly, the “plotting”
of the “graph” can be a completely internal computation
performed by the software.

Once at least one test GPR signal has been captured, a first
window average of a first predetermined number of the last
maximum PSDs is computed, as indicated in block 48, and
a second window average of a second predetermined num-
ber of the last maximum PSDs is computed, as indicated in
block 50. As described above in reference to the simulations
that were performed, the first predetermined number can be
smaller than the second predetermined number. In keeping
with the provided example, the first window average can be
the average of the last 4 maximum PSDs and the second
window average can be the average of the last 25 maximum
PSDs (or a smaller number of the last maximum PSDs if
fewer than 25 GPR signals have been captured at that point).
Notably, other numbers of maximum PSDs can be used, if
desired. These two window averages can be calculated using
Equations (4) and (5), respectively.

Referring next to block 52, the one-sided t-distribution
confidence interval is computed. As described above, this
confidence interval can be computed using Equation (7) if
25 or more GPR signals have been captured, or Equation (9)
if less than 25 GPR signals have been captured. At this point,
a first window average of maximum PSDs, a second window
average of maximum PSDs, and a confidence interval have
each been computed. Once these values have been obtained,
they can be used to make a determination as to the potential
proximity of a buried object. To do this, it is determined
whether or not the first window average is greater than the
sum of the second window average and the confidence
interval, as indicated in decision block 54 of FIG. 8B. If not,
the maximum PSD has not increased significantly and,
therefore, it is unlikely that a buried object is near. In such
a case, flow returns to block 44 of FIG. 8A and another new
GPR signal is captured at the next location. If, on the other
hand, the first window average is greater than the second
window average plus the confidence interval, the GPR
signal has significantly increased and it is, therefore, likely
that the GPR device is approaching a buried object. In such
a case, flow continues to block 56 of FIG. 8B and an alert
is issued to the user to warn the user as to this likelihood
prior to the capture of the next GPR signal in block 44. Such
an alert can, for example, take the form of a displayed
message and/or an audible signal generated with the user
interface of the GPR device.

The scanning and monitoring process described above
continues as the GPR device reaches new locations along the
surface of the medium under evaluation. As GPR signals are
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captured, new maximum PSDs are computed and plotted as
a function of location. Assuming the GPR device is moving
toward a buried object, the maximum PSDs will continue to
increase and the computed maximum PSD values will plot
a curve having the upward trajectory of the leading side of
a hyperbola of the type shown in the examples of FIGS. 5B
and 5C. The curve will continue to increase until forming an
apex of the hyperbola, which coincides with the estimated
location of the buried object. Accordingly, with reference to
decision block 58, it is determined whether or not the apex
of the hyperbola has been reached. If not, flow again returns
to block 44 of FIG. 8A and another new GPR signal is
captured at the next location. If so, however, an estimate of
the object location is identified, as indicated in block 60.
This location can, for example, be communicated to the user
with a further displayed message and/or audible signal.

Once the estimated location of the buried object is known,
the depth of the object can be estimated. With reference to
block 62, the velocity of the GPR signals in reaching the
buried object and returning to the GPR device is estimated.
As noted above, this velocity can be estimated using a least
squares approach. Once the velocity has been estimated, the
depth of the object can be estimated based upon that
velocity, as indicated in block 64.

To summarize the above flow diagram, a medium under
evaluation is scanned with a GPR device so as to capture
GPR signals at discrete locations along the surface of the
medium. As the GPR signals are captured, their maximum
energy values (e.g., PSDs) are computed and are monitored
to determine, using statistical analysis that considers win-
dow averages of the maximum energy values and confidence
intervals, whether or not the maximum energy values are
increasing as the surface of the medium is traversed. If a
significant increase in the maximum energy value is
observed, an alert is issued that there may be a nearby buried
object. As scanning and monitoring continues, it is deter-
mined when an apex of a hyperbola formed by plotting the
maximum energy values as a function of location is reached
and the location associated with that apex is designated as
the estimated location of the object. The depth of the object
is then determined by first estimating the velocity of the
GPR signals at that location and then estimating the depth
from the estimated velocity.

In the foregoing disclosure, maximum energy values, in
the form of maximum PSDs, are computed and monitored to
determine if a buried object is near. It is noted, however, that,
in other embodiments, other parameters of the captured GPR
signals can be computed and monitored for this purpose. For
example, dynamic time warping (DTW) values derived from
the GPR signals can be computed and monitored. DTW
algorithms align two signals in the time dimension by
creating a so-called “warping path” and determine a measure
of their dissimilarity independent of certain non-linear varia-
tions. This alignment method provides a powerful tool in
signal classification, aiming to group similar signals based
on their distance. Given two signals A=(a,, . . . a,) and
B=(b,, . . . b,,) not necessarily with equal length, the DTW
process starts by constructing an nxm matrix in which the
element of the (i, j)” component corresponds to the follow-
ing squared Euclidian distance

d(a; by)~(a by’ (18)

The process then continues by retrieving a path through
the matrix that minimizes the total cumulative distance
between the two signals. Specifically, the optimal path is
found by minimizing the warping cost given by
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DTW(A, B) = _| § d
k=1

where d, is the k” element of the warping path. The optimal
path is found using an iterative method. The general proce-
dure to detect hidden buried objects using DTW is as
follows:

(a) Three object-free locations are scanned with GPR and
the average of their signals is considered as the refer-
ence signal for the current under investigation ground.

(b) Proceed by scanning target areas and computing the
DTW distance of the new locations with the reference
signal. The more similar the signals are to the reference
signal, the smaller their distance value. Setting a thresh-
old on the computed sequential dissimilarity measures
assists in detecting potential burial sites.

(c) The DTW values increase gradually by getting closer
to a site with buried objects. Finding a site where a local
peak of DTW happens and investigating the surround-
ing locations to trace a hyperbola will lead to a highly
probable burial location.

A graph of the computed dissimilarity measures for Case
#7 in the three experimental scenarios along with the profiles
is shown in FIG. 9. As above, the object-free locations
(Scenario 1) have similar signals to the reference signals
since their DTW value randomly fluctuates. Getting closer to
the buried object results in higher signal dissimilarity and
higher DTW value in the Scenarios 2 and 3. The increasing
pattern in DTW values are detectable even in the noisy
environment of Scenario 3.

As can be appreciated from the above discussion, in both
the PSD-based method and the DTW-based method, a
parameter based on the captured GPR signal and indicative
of the proximity of a buried object is computed for each
location and that parameter is monitored to determine
whether or not it significantly increases. In addition, in both
methods, the parameter is plotted and the location at which
an apex of a hyperbola occurs is designated the estimated
location of the buried object.

The invention claimed is:

1. A method for detecting buried objects, the method
comprising:

receiving ground penetrating radar (GPR) signals cap-

tured at discrete locations along a surface of a medium
in which an object may be buried;

computing a maximum power spectral density (PSD)

value for each received GPR signal, the maximum PSD
values being indicative of the proximity of a buried
object;

plotting the computed maximum PSD values as a function

of location along the surface of the medium;
determining an apex of a hyperbola that results from the
plotting of the computed maximum PSD values; and
designating a location along the surface of the medium at
which the apex occurs as an estimated location of the
buried object.

2. The method of claim 1, wherein computing a maximum
PSD value for each received GPR signal comprises seg-
menting each GPR signal into segments, computing a win-
dowed discrete Fourier transform (DFT) for each segment,
computing a periodogram value from the DFT for each
segment, and then averaging the periodogram values.

3. The method of claim 1, further comprising monitoring
the computed maximum PSD values to determine when the
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computed maximum PSD values significantly increase and,
when that occurs, issuing an alert to a user that a buried
object may be near.

4. The method claim 3, wherein monitoring the computed
maximum PSD values comprises performing statistical
analysis on the maximum PSD values that considers window
averages of the maximum PSD values and confidence inter-
vals to determine whether or not the maximum PSD values
are increasing as the surface of the medium is traversed.

5. The method of claim 4, wherein performing statistical
analysis comprises computing a first window average of a
first predetermined number of the maximum PSD values,
computing a second window average of a second predeter-
mined number of the maximum PSD values, wherein the
first predetermined number is smaller than the second pre-
determined number.

6. The method of claim 5, wherein performing statistical
analysis further comprises computing a confidence interval.

7. The method of claim 6, wherein performing statistical
analysis further comprises determining if the first window
average is greater than the sum of the second window
average and the confidence interval and, if so, issuing the
alert.

8. The method of claim 1, further comprising estimating
a depth of the buried object at the estimated location.

9. The method of claim 8, wherein estimating a depth
comprises estimating a velocity of the GPR signals at the
estimated location and estimating the depth based upon the
estimated velocity.

10. A system for detecting buried objects, the system
comprising:

a ground penetrating radar (GPR) device configured to
capture GPR signals at discrete locations along a sur-
face of a medium in which an object may be buried; and

a computing component configured to compute a maxi-
mum power spectral density (PSD) value for each
received GPR signal, the maximum PSD values being
indicative of the proximity of a buried object, to plot
the computed maximum PSD values as a function of
location along the surface of the medium, to determine
an apex of a hyperbola that results from the plotting of
the computed maximum PSD values, and to designate
a location along the surface of the medium at which the
apex occurs as an estimated location of the buried
object.

11. The system of claim 10, wherein the computing
component is further configured to monitor the maximum
PSD values to determine when the maximum PSD values
significantly increase and, when that occurs, issuing an alert
to a user that a buried object may be near.

12. The system claim 11, wherein the computing compo-
nent is configured to perform statistical analysis on the
maximum PSD values that considers window averages of
the maximum PSD values and confidence intervals to deter-
mine whether or not the maximum PSD values are increas-
ing as the surface of the medium is traversed.

13. The system of claim 10, wherein the computing
component is further configured to estimate a depth of the
buried object at the estimated location.

14. The system of claim 10, wherein the computing
component is integrated into the GPR device.

15. A non-transitory computer readable medium that
stores an estimation program comprising computer-execut-
able instructions configured to:

receive ground penetrating radar (GPR) signals captured
at discrete locations along a surface of a medium in
which an object may be buried;
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compute a maximum power spectral density (PSD) value
for each received GPR signal, the maximum PSD
values being indicative of the proximity of a buried
object;

plot the computed maximum PSD values as a function of 5
location along the surface of the medium;

determine an apex of a hyperbola that results from the
plotting of the computed maximum PSD values; and

designate a location along the surface of the medium at
which the apex occurs as an estimated location of the 10
buried object.
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